
Backtracking

See Section 7.7 p 333-336 of Weiss



So far we have looked at recursion in general, looked at 
Dynamic Programming as a way to make redundant recursions 
less inefficient, and noticed that recursion can be simulated 
with a loop and a stack.

We will now talk about a technique called Backtracking that 
uses recursion to solve certain types of problems. 

The kinds of problems that can be addressed with 
backtracking have solutions that can be built up with a 
sequence of steps, where we can enumerate the possible 
choices for each step.



For example, there is a classic question about finding n 
squares on an nxn grid so that no two are in the same row, 
the same column, or lie on the same diagonal.  This is 
called the "n-Queens" problem because you can think of it 
as putting n Queen pieces on an nxn chessboard without 
any of them threatening the others.  This problem has  n 
steps -- choosing a row for the first column, a row for the 
second column, etc.  Each of those steps has n choices --
use row 0, row 1, and so forth.  



Sudoku puzzles can be solved by backtracking.  There are 81 
steps (well, 81 minus the given numbers).  The possible 
choices for each step are the numbers 1 through 9.

Finding a path through a maze can be solved by backtracking.  
At each step the possible choices are to move left, right, 
straight ahead, or straight back.



With the previous problems we are looking for any one solution.  
Sometimes we want to find all solutions.  For example, we might 
want to find all of the permutations of the numbers 0..n-1.  This 
can be done with backtracking -- the jth step is finding the jth
entry of the permutation; the possible candidates are the 
numbers 0..n-1.

Sometimes backtracking can be used to solve minimization 
problems.  For example, we might want to find the cheapest 
ordering of a set of cities, where the cost is the cost of flying from 
one to the next.   We can do this by finding all orderings of the 
cities, measuring the cost of each, and keeping track of the 
minimum cost.



Weiss gives an example of using backtracking to find the next 
move in a TicTacToe game.  The idea here is to use backtracking 
to generate all possible situations that might result from the 
current state of the game-- first the computer will move, then 
the opponent, then the computer and so forth.  We then treat 
this as an optimization problem -- maximizing the benefit (to 
the computer) and minimizing the benefit to the opponent.  



We will first consider the sort of problem where we are 
looking for any one solution.  Here is pseudocode; this 
assumes that the solution has n steps and that we can record 
the solution in an array of base-type E.

The signature of the backtracking method is

public boolean solve(int i, E[] Solution)

This assumes we have already filled in the entries of the 
Solution array for indices [0] through [i-1] and that these are 
compatible with a solution.   The method ties all of the 
possible values for step i, and with each recurses to solve the 
problem for i+1



public boolean solve(int i, E[] Solution) {
if (i == n)  // i.e if we are done {

print or do something with the solution
return true;

}
else {

for each of the possible values j for step i {
Solution[i] = j;
if (entries of Solution are compatible)

if (solve(i+1, Solution))
return true;

}
return false;

}
}



This has an easy application to the n-Queens problem.  We 
want to choose n squares on an nxn board so that no two 
are in the same row, column or diagonal: 
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Our backtracking algorithm will choose one row for each 
column and put these rows into an array I call Rows.

For this picture the Rows array is [0, 4, 7, 5, 2, 6, 1, 3]
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Here is the backtracking method that finds solutions to the 
problem:

public static boolean solve(int i, int[] Rows) {
if (i == Rows.length)

return true;  // the caller prints the solution
else for (int j = 0; j < Rows.length; j++) {

Rows[i] = j;
if (Ok(Rows, i))

if (solve(i+1, Rows))
return true;

}
return false;

}



The Ok(int[ ]  Rows, int i) method checks that the entries of Rows from index 
0 to index i are  all compatible -- no two are in the same row, column or 
diagonal.  We don't need to check on the columns because we only assign 
one row to each column. 

To check that no two are in the same row, we just need to make sure that 
entries of Rows are all different numbers.  One way to do this is to make an 
array of booleans, which Java initializes to False, and to make each entry 
corresponding to a row be true:

public static boolean RowsOk(int[] A, int i) {
boolean[] used = new boolean[A.length];
for (int j = 0; j <= i; j++) {

if (used[A[j]])
return false;

else
used[A[j]] = true;

}
return true;

}



For the diagonals we need to think about the indices as we move along a diagonal.

row=0, col=0 row=0, col= 1 row=0, col=2 row=0, col=3

row=1, col=0 row=1, col=1 row=1, col=2 row=1, col=3

row=2, col=0 row=2, col=1 row=2, col=2 row=2, col=3

row=3, col=0 row=3, col=1 row=3, col=2 row=3, col=3

Consider first the diagonals that move upward from left to 
right.  The row and column indices on such a diagonal all 
sum to the same value.  For example, there is a diagonal 
consisting of the (2, 0), (1, 1) and (0, 2) entries.  All of these 
entries have their row and column sum to 2.  The Rows array 
has its upward diagonals okay if no two entries have their 
row and column sum to the same value



public static boolean UpDiagOk(int[] A, int i) {
boolean[] used = new boolean[2*A.length];
for (int j = 0; j <= i; j++) {

int sum = j+A[j];
if (used[sum])

return false;
else

used[sum] = true;
}
return true;

}



The downward diagonals have the difference between their row and column 
constant.  For example, one such diagonal has entries (1, 0), (2, 1), and (3, 2).  
These indices all differ by 1.  We can use this to write a DownDiagOk() method.

Altogether, the  Ok(int[] Rows, int i) method for the Queens problem  is

public boolean Ok(int Rows, int i ) {
return RowsOk(Rows, i) && UpDiagOk(Rows, i) && DownDiagOk(Rows, i);

}



Our basic backtracking paradigm quits as soon as it finds one 
solution: 

public boolean solve(int i, E[] Solution) {
if (i == n)  // i.e if we are done

print or do something with the solution
else {

for each of the possible values j for step i {
Solution[i] = j;
if (entries of Solution are compatible)

if (solve(i+1, Solution))
return true;

}
return false;

}
}



If instead of one solution we want to generate all possible 
solutions, there is no longer a need to return true or false; we 
always run through all candidates:



public  void solve(int i, E[] Solution) {
if (i == n)  // i.e if we are done

print or do something with the solution
else {

for each of the possible values j for step i {
Solution[i] = j;
if (entries of Solution are compatible)

solve(i+1, Solution);
}

}
}



Here is how this applies to finding all solutions of the n-Queens 
problem:

public static void allSolutions(int i, int[] Rows) {
if (i == Rows.length) {

printBoard(Rows);
}
else for (int j = 0; j < Rows.length; j++) {

Rows[i] = j;
if (Ok(Rows, i))

allSolutions(i+1, Rows);
}

}



Now write a function that prints all permutations of the numbers from 0 to n-1.


